LASERS

System Parameters

Efficiencies and power levels are approximately state-of-the-art (1990).

Type	Wavelength	Efficiency	Power levels available (W)	
	$(\mu \mathrm{m})$		Pulsed	CW
CO_2	10.6	$\begin{array}{c} 0.010.02\\ \text{(pulsed)} \end{array}$	$> 2 \times 10^{13}$	$> 10^5$
CO	5	0.4	$> 10^9$	> 100
Holmium	2.06	$0.03\dagger - 0.1\ddagger$	$> 10^{7}$	30
Iodine	1.315	0.003	$> 10^{12}$	_
Nd-glass, YAG	1.06	$0.001-0.06\dagger > 0.1\ddagger$	$\sim 10^{14}$ (tenbeam system)	$1-10^{3}$
*Color center	1–4	10^{-3}	$> 10^6$	1
*Vibronic (Ti Sapphire)	0.7-0.9	$> 0.1 \times \eta_p$	10^6	1–5
Ruby	0.6943	$< 10^{-3}$	10^{10}	1
He-Ne	0.6328	10^{-4}	_	$1-50\times10^{-3}$
*Argon ion	0.45 – 0.60	10^{-3}	5×10^4	1–20
*OPO	0.4 – 9.0	$> 0.1 \times \eta_p$	10^{6}	1–5
N_2	0.3371	0.001 – 0.05	$10^5 - 10^6$	_
*Dye	0.3 – 1.1	10^{-3}	$> 10^6$	140
Kr-F	0.26	0.08	$> 10^9$	500
Xenon	0.175	0.02	$> 10^8$	_

^{*}Tunable sources †lamp-driven ‡diode-driven

YAG stands for Yttrium–Aluminum Garnet and OPO for Optical Parametric Oscillator; η_p is pump laser efficiency.

Formulas

An e-m wave with $\mathbf{k} \parallel \mathbf{B}$ has an index of refraction given by

$$n_{\pm} = \left[1 - \omega_{pe}^{2} / \omega(\omega \mp \omega_{ce})\right]^{1/2},$$

where \pm refers to the helicity. The rate of change of polarization angle θ as a function of displacement s (Faraday rotation) is given by

$$d\theta/ds = (k/2)(n_- - n_+) = 2.36 \times 10^4 NBf^{-2} \text{ cm}^{-1},$$

where N is the electron number density, B is the field strength, and f is the wave frequency, all in cgs.

The quiver velocity of an electron in an e-m field of angular frequency ω is

$$v_0 = eE_{\rm max}/m\omega = 25.6I^{1/2}\lambda_0 \,{\rm cm \, sec}^{-1}$$

in terms of the laser flux $I = cE_{\text{max}}^{2}/8\pi$, with I in watt/cm², laser wavelength λ_0 in μ m. The ratio of quiver energy to thermal energy is

$$W_{\rm qu}/W_{\rm th} = m_e v_0^2/2kT = 1.81 \times 10^{-13} \lambda_0^2 I/T$$

where T is given in eV. For example, if $I = 10^{15} \,\mathrm{W\,cm^{-2}}$, $\lambda_0 = 1 \,\mu\mathrm{m}$, $T = 2 \,\mathrm{keV}$, then $W_{\mathrm{qu}}/W_{\mathrm{th}} \approx 0.1$.

Pondermotive force:

$$\mathcal{F} = N\nabla \langle E^2 \rangle / 8\pi N_c,$$

where

$$N_c = 1.1 \times 10^{21} \lambda_0^{-2} \text{cm}^{-3}.$$

For uniform illumination of a lens with f-number F, the diameter d at focus (85% of the energy) and the depth of focus l (distance to first zero in intensity) are given by

$$d \approx 2.44 F \lambda \theta / \theta_{DL}$$
 and $l \approx \pm 2 F^2 \lambda \theta / \theta_{DL}$.

Here θ is the beam divergence containing 85% of energy and θ_{DL} is the diffraction-limited divergence:

$$\theta_{DL} = 2.44 \lambda/b$$

where b is the aperture. These formulas are modified for nonuniform (such as Gaussian) illumination of the lens or for pathological laser profiles.